Qwen2-1.5B

Qwen2-1.5B is a lightweight model with 1.5 billion parameters, offering an optimal balance between performance and resource efficiency. The model includes 28 layers and employs Grouped Query Attention (GQA) with 12 query heads and 2 shared key-value heads, enabling efficient management of the KV-cache memory.

Trained on 7 trillion tokens of high-quality multilingual data, the model demonstrates significantly enhanced capabilities compared to previous versions, particularly in programming and mathematics. It supports a wide range of languages and delivers competitive results on standard benchmarks, while maintaining relatively low computational resource requirements.

Qwen2-1.5B stands out for its versatility and ability to perform efficiently on both consumer-grade hardware and small servers. The model supports a context window of 32K tokens, allowing it to process long documents and support complex conversations. It is ideally suited for information extraction, document analysis, entry-level programming tasks, educational applications, and enterprise chatbots. Qwen2-1.5B is an excellent choice for users seeking a reliable language model for simple tasks without the need for expensive GPU infrastructure.


Announce Date: 24.07.2024
Parameters: 1.5B
Context: 32K
Attention Type: Full Attention
VRAM requirements: 1.6 GB using 4 bits quantization
Developer: Alibaba
Transformers Version: 4.40.1
License: Apache 2.0

Public endpoint

Use our pre-built public endpoints to test inference and explore Qwen2-1.5B capabilities.
Model Name Context Type GPU TPS Status Link
There are no public endpoints for this model yet.

Private server

Rent your own physically dedicated instance with hourly or long-term monthly billing.

We recommend deploying private instances in the following scenarios:

  • maximize endpoint performance,
  • enable full context for long sequences,
  • ensure top-tier security for data processing in an isolated, dedicated environment,
  • use custom weights, such as fine-tuned models or LoRA adapters.

Recommended configurations for hosting Qwen2-1.5B

Prices:
Name vCPU RAM, MB Disk, GB GPU Price, hour
rtx2080ti-1.16.32.160 16 32768 160 1 $0.41 Launch
teslat4-1.16.16.160 16 16384 160 1 $0.46 Launch
teslaa10-1.16.32.160 16 32768 160 1 $0.53 Launch
teslaa2-2.16.32.160 16 32768 160 2 $0.57 Launch
rtx3090-1.16.24.160 16 24576 160 1 $0.88 Launch
rtx4090-1.16.32.160 16 32768 160 1 $1.15 Launch
teslav100-1.12.64.160 12 65536 160 1 $1.20 Launch
rtx5090-1.16.64.160 16 65536 160 1 $1.59 Launch
teslaa100-1.16.64.160 16 65536 160 1 $2.58 Launch
teslah100-1.16.64.160 16 65536 160 1 $5.11 Launch
Prices:
Name vCPU RAM, MB Disk, GB GPU Price, hour
rtx2080ti-1.16.32.160 16 32768 160 1 $0.41 Launch
teslat4-1.16.16.160 16 16384 160 1 $0.46 Launch
teslaa10-1.16.32.160 16 32768 160 1 $0.53 Launch
teslaa2-2.16.32.160 16 32768 160 2 $0.57 Launch
rtx3090-1.16.24.160 16 24576 160 1 $0.88 Launch
rtx4090-1.16.32.160 16 32768 160 1 $1.15 Launch
teslav100-1.12.64.160 12 65536 160 1 $1.20 Launch
rtx5090-1.16.64.160 16 65536 160 1 $1.59 Launch
teslaa100-1.16.64.160 16 65536 160 1 $2.58 Launch
teslah100-1.16.64.160 16 65536 160 1 $5.11 Launch
Prices:
Name vCPU RAM, MB Disk, GB GPU Price, hour
rtx2080ti-1.16.32.160 16 32768 160 1 $0.41 Launch
teslat4-1.16.16.160 16 16384 160 1 $0.46 Launch
teslaa10-1.16.32.160 16 32768 160 1 $0.53 Launch
teslaa2-2.16.32.160 16 32768 160 2 $0.57 Launch
rtx3090-1.16.24.160 16 24576 160 1 $0.88 Launch
rtx4090-1.16.32.160 16 32768 160 1 $1.15 Launch
teslav100-1.12.64.160 12 65536 160 1 $1.20 Launch
rtx5090-1.16.64.160 16 65536 160 1 $1.59 Launch
teslaa100-1.16.64.160 16 65536 160 1 $2.58 Launch
teslah100-1.16.64.160 16 65536 160 1 $5.11 Launch

Related models

QwQ

Need help?

Contact our dedicated neural networks support team at nn@immers.cloud or send your request to the sales department at sale@immers.cloud.