Qwen3-VL-4B-Thinking

reasoning
multimodal

Qwen3-VL-4B-Thinking is a compact 4-billion-parameter model with enhanced reasoning chain capabilities, optimized for solving multimodal tasks that require analysis. The model represents a unique combination of deployment efficiency and advanced reasoning abilities with minimal hardware requirements.

Architecturally, the model inherits all three key innovations of the Qwen3-VL series: Interleaved-MRoPE ensures precise spatio-temporal understanding of video content, DeepStack enables the extraction of fine-grained details through multi-level fusion of visual features, and Text-Timestamp Alignment provides second-level accuracy for event localization. The context window is 256K tokens, expandable to 1M, and the recommended output sequence length has been increased to 40,960 tokens to provide sufficient space for extensive reasoning chains.

On reasoning and multimodal benchmarks , the model consistently ranks among the top multimodal models in its class, outperforming many solutions of a similar size, including those from Microsoft, OpenAI, Google, and others.Application scenarios for Qwen3-VL-4B-Thinking include: educational applications, scientific research tasks, intelligent processing of complex documents with information extraction from specific fields according to required templates, and visual data verification tools.


Announce Date: 15.10.2025
Parameters: 4B
Context: 263K
Layers: 36
Attention Type: Full Attention
VRAM requirements: 42.0 GB using 4 bits quantization
Developer: Qwen
Transformers Version: 4.57.0.dev0
License: Apache 2.0

Public endpoint

Use our pre-built public endpoints for free to test inference and explore Qwen3-VL-4B-Thinking capabilities. You can obtain an API access token on the token management page after registration and verification.
Model Name Context Type GPU TPS Status Link
There are no public endpoints for this model yet.

Private server

Rent your own physically dedicated instance with hourly or long-term monthly billing.

We recommend deploying private instances in the following scenarios:

  • maximize endpoint performance,
  • enable full context for long sequences,
  • ensure top-tier security for data processing in an isolated, dedicated environment,
  • use custom weights, such as fine-tuned models or LoRA adapters.

Recommended configurations for hosting Qwen3-VL-4B-Thinking

Prices:
Name vCPU RAM, MB Disk, GB GPU Price, hour
teslat4-4.16.64.160
262,144.0
16 65536 160 4 $0.96 Launch
teslaa2-4.32.128.160
262,144.0
32 131072 160 4 $1.26 Launch
teslaa10-3.16.96.160
262,144.0
16 98304 160 3 $1.34 Launch
teslav100-2.16.64.240
262,144.0
16 65535 240 2 $2.22 Launch
rtxa5000-4.16.128.160.nvlink
262,144.0
16 131072 160 4 $2.34 Launch
rtx3090-3.16.96.160
262,144.0
16 98304 160 3 $2.45 Launch
teslaa100-1.16.64.160
262,144.0
16 65536 160 1 $2.58 Launch
rtx5090-2.16.64.160
262,144.0
16 65536 160 2 $2.93 Launch
rtx4090-3.16.96.160
262,144.0
16 98304 160 3 $3.23 Launch
teslah100-1.16.64.160
262,144.0
16 65536 160 1 $5.11 Launch
h200-1.16.128.160
262,144.0
16 131072 160 1 $6.98 Launch
Prices:
Name vCPU RAM, MB Disk, GB GPU Price, hour
teslat4-4.16.64.160
262,144.0
16 65536 160 4 $0.96 Launch
teslaa2-4.32.128.160
262,144.0
32 131072 160 4 $1.26 Launch
teslaa10-3.16.96.160
262,144.0
16 98304 160 3 $1.34 Launch
teslav100-2.16.64.240
262,144.0
16 65535 240 2 $2.22 Launch
rtxa5000-4.16.128.160.nvlink
262,144.0
16 131072 160 4 $2.34 Launch
rtx3090-3.16.96.160
262,144.0
16 98304 160 3 $2.45 Launch
teslaa100-1.16.64.160
262,144.0
16 65536 160 1 $2.58 Launch
rtx5090-2.16.64.160
262,144.0
16 65536 160 2 $2.93 Launch
rtx4090-3.16.96.160
262,144.0
16 98304 160 3 $3.23 Launch
teslah100-1.16.64.160
262,144.0
16 65536 160 1 $5.11 Launch
h200-1.16.128.160
262,144.0
16 131072 160 1 $6.98 Launch
Prices:
Name vCPU RAM, MB Disk, GB GPU Price, hour
teslat4-4.16.64.160
262,144.0
16 65536 160 4 $0.96 Launch
teslaa2-4.32.128.160
262,144.0
32 131072 160 4 $1.26 Launch
teslaa10-3.16.96.160
262,144.0
16 98304 160 3 $1.34 Launch
teslav100-2.16.64.240
262,144.0
16 65535 240 2 $2.22 Launch
rtxa5000-4.16.128.160.nvlink
262,144.0
16 131072 160 4 $2.34 Launch
rtx3090-3.16.96.160
262,144.0
16 98304 160 3 $2.45 Launch
teslaa100-1.16.64.160
262,144.0
16 65536 160 1 $2.58 Launch
rtx5090-2.16.64.160
262,144.0
16 65536 160 2 $2.93 Launch
rtx4090-3.16.96.160
262,144.0
16 98304 160 3 $3.23 Launch
teslah100-1.16.64.160
262,144.0
16 65536 160 1 $5.11 Launch
h200-1.16.128.160
262,144.0
16 131072 160 1 $6.98 Launch

Related models

Need help?

Contact our dedicated neural networks support team at nn@immers.cloud or send your request to the sales department at sale@immers.cloud.